Math 164-1: Optimization

نویسنده

  • Alpár R. Mészáros
چکیده

(4) Consider the point y = (1/2, 0, 0) ∈ Ω. Is y an interior point of Ω? Characterize all the feasible directions e = (e1, e2, e3) ∈ R at y (a picture could help). Is y a (strict) local maximizer of f? (5) Consider the point z = (1/2, 1/2, 1/2) ∈ Ω. Is z an interior point of Ω? Characterize all the feasible directions e = (e1, e2, e3) ∈ R at z. Is z a (strict) local maximizer of f? What is the value of f at z?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Nonlinear Optimization - Theory, Algorithms, and Applications with MATLAB

introduction to nonlinear optimization theory algorithms introduction to nonlinear optimization theory algorithms introduction to nonlinear optimization theory algorithms introduction to nonlinear optimization theory algorithms chapter 16: introduction to nonlinear programming nonlinear programming: concepts, algorithms and applications theory, algorithms, and applications with matlab introduct...

متن کامل

The Extent of Using Real Problems and Emphasizing Modelling in the 10th Grade Math Textbook

Modelling is emphasized heavily in the national math curriculum, yet the extent to which this concept is covered in the math textbooks is, while of great importance, unknown. To discover the extent to which this issue, and real problems in general, are covered in the 10th grade math textbooks, the content of the textbook for the ‘theoretical’ (“nazari”) branch was analyzed. In doing so, the vie...

متن کامل

A trust region algorithm for constrained optimization

We review the main techniques used in trust region algorithms for nonlinear constrained optimization. 1. Trust Region Idea Constrained optimization is to minimize a function subject to finitely many algebraic equation and inequality conditions. It has the following form

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016